Search results
Results from the WOW.Com Content Network
Methods that find optimal circuit representations of Boolean functions are often referred to as exact synthesis in the literature. Due to the computational complexity, exact synthesis is tractable only for small Boolean functions. Recent approaches map the optimization problem to a Boolean satisfiability problem.
This expression says that the output function f will be 1 for the minterms ,,,, and (denoted by the 'm' term) and that we don't care about the output for and combinations (denoted by the 'd' term). The summation symbol ∑ {\displaystyle \sum } denotes the logical sum (logical OR, or disjunction) of all the terms being summed over.
The POS expression gives a complement of the function (if F is the function so its complement will be F'). [10] Karnaugh maps can also be used to simplify logic expressions in software design. Boolean conditions, as used for example in conditional statements, can get very complicated, which makes the code difficult to read and to maintain. Once ...
Boolean satisfiability problem, the canonical NP-complete computational problem; L/poly, a complexity class that strictly contains the set of problems with polynomially sized BDDs [citation needed] Model checking; Radix tree; Barrington's theorem; Hardware acceleration; Karnaugh map, a method of simplifying Boolean algebra expressions
In Boolean algebra, any Boolean function can be expressed in the canonical disjunctive normal form , [1] minterm canonical form, or Sum of Products (SoP or SOP) as a disjunction (OR) of minterms. The De Morgan dual is the canonical conjunctive normal form ( CCNF ), maxterm canonical form , or Product of Sums ( PoS or POS ) which is a ...
Don't-care terms are important to consider in minimizing logic circuit design, including graphical methods like Karnaugh–Veitch maps and algebraic methods such as the Quine–McCluskey algorithm. In 1958, Seymour Ginsburg proved that minimization of states of a finite-state machine with don't-care conditions does not necessarily yield a ...
In computer science, a Boolean expression is an expression used in programming languages that produces a Boolean value when evaluated. A Boolean value is either true or false.A Boolean expression may be composed of a combination of the Boolean constants True/False or Yes/No, Boolean-typed variables, Boolean-valued operators, and Boolean-valued functions.
A propositional logic formula, also called Boolean expression, is built from variables, operators AND (conjunction, also denoted by ∧), OR (disjunction, ∨), NOT (negation, ¬), and parentheses. A formula is said to be satisfiable if it can be made TRUE by assigning appropriate logical values (i.e. TRUE, FALSE) to its variables.