Search results
Results from the WOW.Com Content Network
Stereocilia (or stereovilli or villi) are non-motile apical cell modifications. They are distinct from cilia and microvilli , but are closely related to microvilli. They form single "finger-like" projections that may be branched, with normal cell membrane characteristics.
Deflections of the stereocilia in the direction of the tallest stereocilia leads to an increased rate of opening of nonspecific cation channels. This, in turn, causes receptor depolarization and leads to the excitement of the cochlear nerve afferents that are located at the base of the hair cell .
The cells interdigitate with each other, and project microvilli into the intercellular space. They are supporting cells for the auditory hair cells in the organ of Corti. They are named after German pathologist Arthur Böttcher (1831–1889). Claudius' cells are found in the organ of Corti located above rows of Boettcher's cells. Like Boettcher ...
One kinocilium is the longest cilium located on the hair cell next to 40–70 stereocilia. During movement of the body, the hair cell is depolarized when the stereocilia move toward the kinocilium. The depolarization of the hair cell causes neurotransmitter to be released and an increase in firing frequency of cranial nerve VIII. When the ...
Pseudostratified columnar epithelia with stereocilia are located in the epididymis. Stereocilia of the epididymis are not cilia because their cytoskeleton is composed of actin filaments, not microtubules. [3] They are structurally and molecularly more similar to microvilli than to true cilia. [dubious – discuss]
The plus ends of the actin filaments are located at the tip of the microvillus and are capped, possibly by capZ proteins, [2] while the minus ends are anchored in the terminal web composed of a complicated set of proteins including spectrin and myosin II. The space between microvilli at a cell's surface is called the intermicrovillous space.
The hair bundle is composed of stiff microvilli called stereocilia and is involved with mechanoreception of sound waves. Stereocilia cells generate an electrical response to the vibrations of sound waves, crucial for normal hearing. This gene is part of a tandem duplication on chromosome 15; the second copy is a pseudogene.
The stereocilia are oriented by the striola, a curved ridge that runs through the middle of the macula; in the saccule they are oriented away from the striola [2] The tips of the stereocilia and kinocilium are embedded in a gelatinous otolithic membrane. This membrane is weighted with protein-calcium carbonate granules called otoliths, which ...