enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Model order reduction - Wikipedia

    en.wikipedia.org/wiki/Model_order_reduction

    Model order reduction aims to lower the computational complexity of such problems, for example, in simulations of large-scale dynamical systems and control systems. By a reduction of the model's associated state space dimension or degrees of freedom , an approximation to the original model is computed which is commonly referred to as a reduced ...

  3. Random projection - Wikipedia

    en.wikipedia.org/wiki/Random_projection

    Random projection can be further condensed by quantization (discretization), with 1-bit (sign random projection) or multi-bits. It is the building block of SimHash, [7] RP tree, [8] and other memory efficient estimation and learning methods. [9] [10]

  4. Dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Dimensionality_reduction

    Methods are commonly divided into linear and nonlinear approaches. [1] Linear approaches can be further divided into feature selection and feature extraction . [ 2 ] Dimensionality reduction can be used for noise reduction , data visualization , cluster analysis , or as an intermediate step to facilitate other analyses.

  5. Nonlinear dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_dimensionality...

    Nonlinear dimensionality reduction, also known as manifold learning, is any of various related techniques that aim to project high-dimensional data, potentially existing across non-linear manifolds which cannot be adequately captured by linear decomposition methods, onto lower-dimensional latent manifolds, with the goal of either visualizing ...

  6. Low-rank approximation - Wikipedia

    en.wikipedia.org/wiki/Low-rank_approximation

    In mathematics, low-rank approximation refers to the process of approximating a given matrix by a matrix of lower rank. More precisely, it is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.

  7. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.

  8. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent is a method for unconstrained mathematical optimization. It is a first-order iterative algorithm for minimizing a differentiable multivariate function . The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of ...

  9. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    The Nelder–Mead method requires, in the original variant, no more than two evaluations per iteration, except for the shrink operation described later, which is attractive compared to some other direct-search optimization methods. However, the overall number of iterations to proposed optimum may be high.