enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Z-test - Wikipedia

    en.wikipedia.org/wiki/Z-test

    Z-test tests the mean of a distribution. For each significance level in the confidence interval, the Z-test has a single critical value (for example, 1.96 for 5% two tailed) which makes it more convenient than the Student's t-test whose critical values are defined by the sample size (through the corresponding degrees of freedom). Both the Z ...

  3. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    The confidence interval can be expressed in terms of statistical significance, e.g.: "The 95% confidence interval represents values that are not statistically significantly different from the point estimate at the .05 level." [20] Interpretation of the 95% confidence interval in terms of statistical significance.

  4. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In the social sciences, a result may be considered statistically significant if its confidence level is of the order of a two-sigma effect (95%), while in particle physics and astrophysics, there is a convention of requiring statistical significance of a five-sigma effect (99.99994% confidence) to qualify as a discovery. [3]

  5. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.

  6. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    Using this and the Wald method for the binomial distribution, yields a confidence interval, with Z representing the standard Z-score for the desired confidence level (e.g., 1.96 for a 95% confidence interval), in the form:

  7. Fisher transformation - Wikipedia

    en.wikipedia.org/wiki/Fisher_transformation

    The application of Fisher's transformation can be enhanced using a software calculator as shown in the figure. Assuming that the r-squared value found is 0.80, that there are 30 data [clarification needed], and accepting a 90% confidence interval, the r-squared value in another random sample from the same population may range from 0.656 to 0.888.

  8. 97.5th percentile point - Wikipedia

    en.wikipedia.org/wiki/97.5th_percentile_point

    Because of the central limit theorem, this number is used in the construction of approximate 95% confidence intervals. Its ubiquity is due to the arbitrary but common convention of using confidence intervals with 95% probability in science and frequentist statistics, though other probabilities (90%, 99%, etc.) are sometimes used.

  9. Point estimation - Wikipedia

    en.wikipedia.org/wiki/Point_estimation

    To do this, we need to construct a confidence interval. Confidence interval describes how reliable an estimate is. We can calculate the upper and lower confidence limits of the intervals from the observed data. Suppose a dataset x 1, . . . , x n is given, modeled as realization of random variables X 1, . . . , X n. Let θ be the parameter of ...