Search results
Results from the WOW.Com Content Network
Single-precision floating-point format (sometimes called FP32 or float32) is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit ...
A precisely specified floating-point representation at the bit-string level, so that all compliant computers interpret bit patterns the same way. This makes it possible to accurately and efficiently transfer floating-point numbers from one computer to another (after accounting for endianness).
A floating-point unit (FPU), numeric processing unit (NPU), [1] colloquially math coprocessor, is a part of a computer system specially designed to carry out operations on floating-point numbers. [2] Typical operations are addition , subtraction , multiplication , division , and square root .
Similar binary floating-point formats can be defined for computers. There is a number of such schemes, the most popular has been defined by Institute of Electrical and Electronics Engineers (IEEE). The IEEE 754-2008 standard specification defines a 64 bit floating-point format with: an 11-bit binary exponent, using "excess-1023" format.
The number 0.15625 represented as a single-precision IEEE 754-1985 floating-point number. See text for explanation. The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each.
In computing, octuple precision is a binary floating-point-based computer number format that occupies 32 bytes (256 bits) in computer memory.This 256-bit octuple precision is for applications requiring results in higher than quadruple precision.
In computer architecture, 128-bit integers, memory addresses, or other data units are those that are 128 bits (16 octets) wide.Also, 128-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size.
In C and related programming languages, long double refers to a floating-point data type that is often more precise than double precision though the language standard only requires it to be at least as precise as double. As with C's other floating-point types, it may not necessarily map to an IEEE format.