Search results
Results from the WOW.Com Content Network
The transmission of an etalon as a function of wavelength. A high-finesse etalon (red line) shows sharper peaks and lower transmission minima than a low-finesse etalon (blue). The free spectral range is Δλ (shown above the graph). The FSR is related to the full-width half-maximum δλ of any one transmission band by a quantity known as the ...
10 cm = 1.0 dm – wavelength of the highest UHF radio frequency, 3 GHz; 12 cm = 1.2 dm – wavelength of the 2.45 GHz ISM radio band; 21 cm = 2.1 dm – wavelength of the 1.4 GHz hydrogen emission line, a hyperfine transition of the hydrogen atom; 100 cm = 10 dm – wavelength of the lowest UHF radio frequency, 300 MHz
For example, a wavenumber in inverse centimeters can be converted to a frequency expressed in the unit gigahertz by multiplying by 29.979 2458 cm/ns (the speed of light, in centimeters per nanosecond); [5] conversely, an electromagnetic wave at 29.9792458 GHz has a wavelength of 1 cm in free space.
In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.
Radiant intensity is used to characterize the emission of radiation by an antenna: [2], = (), where E e is the irradiance of the antenna;; r is the distance from the antenna.; Unlike power density, radiant intensity does not depend on distance: because radiant intensity is defined as the power through a solid angle, the decreasing power density over distance due to the inverse-square law is ...
For example, the long-wave (red) limit changes proportionally to the position of the L-opsin. The positions are defined by the peak wavelength (wavelength of highest sensitivity), so as the L-opsin peak wavelength blue shifts by 10 nm, the long-wave limit of the visible spectrum also shifts 10 nm.
The two forms have different dimensions and units: spectral irradiance of a frequency spectrum is measured in watts per square metre per hertz (W⋅m −2 ⋅Hz −1), while spectral irradiance of a wavelength spectrum is measured in watts per square metre per metre (W⋅m −3), or more commonly watts per square metre per nanometre (W⋅m −2 ...
The spectral resolution of a spectrograph, or, more generally, of a frequency spectrum, is a measure of its ability to resolve features in the electromagnetic spectrum.It is usually denoted by , and is closely related to the resolving power of the spectrograph, defined as =, where is the smallest difference in wavelengths that can be distinguished at a wavelength of .