Search results
Results from the WOW.Com Content Network
The state-space representation (also known as the "time-domain approach") provides a convenient and compact way to model and analyze systems with multiple inputs and outputs. With p {\displaystyle p} inputs and q {\displaystyle q} outputs, we would otherwise have to write down q × p {\displaystyle q\times p} Laplace transforms to encode all ...
If the size of the state space is finite, calculating the size of the state space is a combinatorial problem. [4] For example, in the Eight queens puzzle, the state space can be calculated by counting all possible ways to place 8 pieces on an 8x8 chessboard. This is the same as choosing 8 positions without replacement from a set of 64, or
State space search is a process used in the field of computer science, including artificial intelligence (AI), in which successive configurations or states of an instance are considered, with the intention of finding a goal state with the desired property. Problems are often modelled as a state space, a set of states that a problem
A state-space model is a representation of a system in which the effect of all "prior" input values is contained by a state vector. In the case of an m-d system, each dimension has a state vector that contains the effect of prior inputs relative to that dimension. The collection of all such dimensional state vectors at a point constitutes the ...
In this representation, it is clear that the control input is the second derivative of the output . In the scalar form, the control input is the second derivative of the output q {\displaystyle q} . State space representation
In mathematics, specifically in control theory, subspace identification (SID) aims at identifying linear time invariant (LTI) state space models from input-output data. SID does not require that the user parametrizes the system matrices before solving a parametric optimization problem and, as a consequence, SID methods do not suffer from problems related to local minima that often lead to ...
That is, we can informally define controllability as follows: If for any initial state and any final state there exists an input sequence to transfer the system state from to in a finite time interval, then the system modeled by the state-space representation is controllable.
In artificial intelligence and computer programming, state space planning is a process used in designing programs to search for data or solutions to problems. In a computer algorithm that searches a data structure for a piece of data, for example a program that looks up a word in a computer dictionary, the state space is a collective term for all the data to be searched.