Search results
Results from the WOW.Com Content Network
The term stems from cumene (isopropyl benzene), the intermediate material during the process. It was invented by R. Ūdris and P. Sergeyev in 1942 (USSR), [1] and independently by Heinrich Hock in 1944. [2] [3] This process converts two relatively cheap starting materials, benzene and propylene, into two more valuable ones, phenol and acetone.
In the body, benzene is enzymatically converted to a series of oxidation products including muconic acid, phenylmercapturic acid, phenol, catechol, hydroquinone and 1,2,4-trihydroxybenzene. Most of these metabolites have some value as biomarkers of human exposure, since they accumulate in the urine in proportion to the extent and duration of ...
The Raschig–Hooker process's ability to make phenol makes it comparable to other methods, such as the Dow and Bayer process, which also converts benzene into phenol. In fact, the ability to recycle the hydrogen chloride made the Raschig–Hooker process preferable to the Dow and Bayer process, which requires its sodium chloride product to be ...
Phenol is a component in liquid–liquid phenol–chloroform extraction technique used in molecular biology for obtaining nucleic acids from tissues or cell culture samples. Depending on the pH of the solution either DNA or RNA can be extracted. Phenol is so inexpensive that it also attracts many small-scale uses.
Formyl functional group is shown in blue. Formylation refers to any chemical processes in which a compound is functionalized with a formyl group (-CH=O). In organic chemistry, the term is most commonly used with regards to aromatic compounds (for example the conversion of benzene to benzaldehyde in the Gattermann–Koch reaction).
The simplest is phenol, C 6 H 5 OH. Phenolic compounds are classified as simple phenols or polyphenols based on the number of phenol units in the molecule. Phenol – the simplest of the phenols Chemical structure of salicylic acid, the active metabolite of aspirin. Phenols are both synthesized industrially and produced by plants and ...
Acetophenone is formed as a byproduct of the cumene process, the industrial route for the synthesis of phenol and acetone.In the Hock rearrangement of isopropylbenzene hydroperoxide, migration of a methyl group rather than the phenyl group gives acetophenone and methanol as a result of an alternate rearrangement of the intermediate:
Benzene can be easily converted to chlorobenzene by nucleophilic aromatic substitution via a benzyne intermediate. [1] It is treated with aqueous sodium hydroxide at 350 °C and 300 bar or molten sodium hydroxide at 350 °C to convert it to sodium phenoxide, which yields phenol upon acidification. [2]