enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes ...

  3. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    A matrix is in reduced row echelon form if it is in row echelon form, with the additional property that the first nonzero entry of each row is equal to and is the only nonzero entry of its column. The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it.

  4. Reduction (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reduction_(mathematics)

    In a similar fashion, any row or column i of F with a zero value may be eliminated if the corresponding value of x i is not desired. A reduced K may be reduced again. As a note, since each reduction requires an inversion, and each inversion is an operation with computational cost O(n 3), most large matrices are pre-processed to reduce ...

  5. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    A pivot position in a matrix, A, is a position in the matrix that corresponds to a row–leading 1 in the reduced row echelon form of A. Since the reduced row echelon form of A is unique, the pivot positions are uniquely determined and do not depend on whether or not row interchanges are performed in the reduction process. Also, the pivot of a ...

  6. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    In practice, we can construct one specific rank factorization as follows: we can compute , the reduced row echelon form of .Then is obtained by removing from all non-pivot columns (which can be determined by looking for columns in which do not contain a pivot), and is obtained by eliminating any all-zero rows of .

  7. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    LDU decomposition of a Walsh matrix. Let A be a square matrix. An LU factorization refers to the factorization of A, with proper row and/or column orderings or permutations, into two factors – a lower triangular matrix L and an upper triangular matrix U:

  8. Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  9. Parametric equation - Wikipedia

    en.wikipedia.org/wiki/Parametric_equation

    The standard method for computing a parametric form of the solution is to use Gaussian elimination for computing a reduced row echelon form of the augmented matrix. Then the unknowns that can be used as parameters are the ones that correspond to columns not containing any leading entry (that is the left most non zero entry in a row or the ...