enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...

  3. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    The damping ratio is a system parameter, denoted by ζ ("zeta"), that can vary from undamped (ζ = 0), underdamped (ζ < 1) through critically damped (ζ = 1) to overdamped (ζ > 1). The behaviour of oscillating systems is often of interest in a diverse range of disciplines that include control engineering , chemical engineering , mechanical ...

  4. Settling time - Wikipedia

    en.wikipedia.org/wiki/Settling_time

    Settling time depends on the system response and natural frequency. The settling time for a second order , underdamped system responding to a step response can be approximated if the damping ratio ζ ≪ 1 {\displaystyle \zeta \ll 1} by T s = − ln ⁡ ( tolerance fraction ) damping ratio × natural freq {\displaystyle T_{s}=-{\frac {\ln ...

  5. Prony's method - Wikipedia

    en.wikipedia.org/wiki/Prony's_method

    Similar to the Fourier transform, Prony's method extracts valuable information from a uniformly sampled signal and builds a series of damped complex exponentials or damped sinusoids. This allows the estimation of frequency, amplitude, phase and damping components of a signal.

  6. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  7. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    This is called the damped resonance frequency or the damped natural frequency. It is the frequency the circuit will naturally oscillate at if not driven by an external source. The resonance frequency, ω 0 , which is the frequency at which the circuit will resonate when driven by an external oscillation, may often be referred to as the undamped ...

  8. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The period and frequency are determined by the size of the mass m and the force constant k, while the amplitude and phase are determined by the starting position and velocity. The velocity and acceleration of a simple harmonic oscillator oscillate with the same frequency as the position, but with shifted phases. The velocity is maximal for zero ...

  9. Relaxation (physics) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(physics)

    model damped unforced oscillations of a weight on a spring. The displacement will then be of the form () = / ⁡ (). The constant T (= /) is called the relaxation time of the system and the constant μ is the quasi-frequency.