enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dormand–Prince method - Wikipedia

    en.wikipedia.org/wiki/Dormand–Prince_method

    Dormand–Prince is the default method in the ode45 solver for MATLAB [4] and GNU Octave [5] and is the default choice for the Simulink's model explorer solver. It is an option in Python's SciPy ODE integration library [6] and in Julia's ODE solvers library. [7] Implementations for the languages Fortran, [8] Java, [9] and C++ [10] are also ...

  3. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly.

  4. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods .

  5. Parker–Sochacki method - Wikipedia

    en.wikipedia.org/wiki/Parker–Sochacki_method

    The end result is a high order piecewise solution to the original ODE problem. The order of the solution desired is an adjustable variable in the program that can change between steps. The order of the solution is only limited by the floating point representation on the machine running the program.

  6. Bogacki–Shampine method - Wikipedia

    en.wikipedia.org/wiki/Bogacki–Shampine_method

    The Bogacki–Shampine method is implemented in the ode3 for fixed step solver and ode23 for a variable step solver function in MATLAB (Shampine & Reichelt 1997). Low-order methods are more suitable than higher-order methods like the Dormand–Prince method of order five, if only a crude approximation to the solution is required. Bogacki and ...

  7. Truncation error (numerical integration) - Wikipedia

    en.wikipedia.org/wiki/Truncation_error...

    Iserles, Arieh (1996), A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, ISBN 978-0-521-55655-2. Süli, Endre; Mayers, David (2003), An Introduction to Numerical Analysis, Cambridge University Press, ISBN 0521007941.

  8. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [ 2 ] [ 3 ] They are also used for the solution of linear equations for linear least-squares problems [ 4 ] and also for systems of linear inequalities, such as those arising in linear programming .

  9. Newmark-beta method - Wikipedia

    en.wikipedia.org/wiki/Newmark-beta_method

    The Newmark-beta method is a method of numerical integration used to solve certain differential equations.It is widely used in numerical evaluation of the dynamic response of structures and solids such as in finite element analysis to model dynamic systems.