enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Group by (SQL) - Wikipedia

    en.wikipedia.org/wiki/Group_by_(SQL)

    Typically, grouping is used to apply some sort of aggregate function for each group. [1] [2] The result of a query using a GROUP BY statement contains one row for each group. This implies constraints on the columns that can appear in the associated SELECT clause. As a general rule, the SELECT clause may only contain columns with a unique value ...

  3. Quantile function - Wikipedia

    en.wikipedia.org/wiki/Quantile_function

    Quantile functions are used in both statistical applications and Monte Carlo methods. The quantile function is one way of prescribing a probability distribution, and it is an alternative to the probability density function (pdf) or probability mass function, the cumulative distribution function (cdf) and the characteristic function.

  4. Quantile regression - Wikipedia

    en.wikipedia.org/wiki/Quantile_regression

    Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median (or other quantiles) of the response variable.

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In the more general multiple regression model, there are independent variables: = + + + +, where is the -th observation on the -th independent variable.If the first independent variable takes the value 1 for all , =, then is called the regression intercept.

  6. Quantile - Wikipedia

    en.wikipedia.org/wiki/Quantile

    In some cases the value of a quantile may not be uniquely determined, as can be the case for the median (2-quantile) of a uniform probability distribution on a set of even size. Quantiles can also be applied to continuous distributions, providing a way to generalize rank statistics to continuous variables (see percentile rank).

  7. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    The inverse cumulative distribution function (quantile function) of the logistic distribution is a generalization of the logit function. Its derivative is called the quantile density function. They are defined as follows: (;,) = + ⁡ ().

  8. Quartile - Wikipedia

    en.wikipedia.org/wiki/Quartile

    The first quartile (Q 1) is defined as the 25th percentile where lowest 25% data is below this point. It is also known as the lower quartile. The second quartile (Q 2) is the median of a data set; thus 50% of the data lies below this point. The third quartile (Q 3) is the 75th percentile where

  9. Q–Q plot - Wikipedia

    en.wikipedia.org/wiki/Q–Q_plot

    Q–Q plot for first opening/final closing dates of Washington State Route 20, versus a normal distribution. [5] Outliers are visible in the upper right corner. A Q–Q plot is a plot of the quantiles of two distributions against each other, or a plot based on estimates of the quantiles.