enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intersection (set theory) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(set_theory)

    So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...

  3. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  4. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  5. Intersection - Wikipedia

    en.wikipedia.org/wiki/Intersection

    More generally, in set theory, the intersection of sets is defined to be the set of elements which belong to all of them. Unlike the Euclidean definition, this does not presume that the objects under consideration lie in a common space. It simply means the overlapping area of two or more objects or geometries.

  6. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Intersection of the sets A and B, denoted A ∩ B, is the set of all objects that are members of both A and B. For example, the intersection of {1, 2, 3} ...

  7. Cantor's intersection theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_intersection_theorem

    A simple corollary of the theorem is that the Cantor set is nonempty, since it is defined as the intersection of a decreasing nested sequence of sets, each of which is defined as the union of a finite number of closed intervals; hence each of these sets is non-empty, closed, and bounded. In fact, the Cantor set contains uncountably many points.

  8. Simple theorems in the algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Simple_theorems_in_the...

    The algebra of sets is an interpretation or model of Boolean algebra, with union, intersection, set complement, U, and {} interpreting Boolean sum, product, complement, 1, and 0, respectively. The properties below are stated without proof , but can be derived from a small number of properties taken as axioms .

  9. Finite intersection property - Wikipedia

    en.wikipedia.org/wiki/Finite_intersection_property

    Let be a set and a nonempty family of subsets of ; that is, is a subset of the power set of . Then is said to have the finite intersection property if every nonempty finite subfamily has nonempty intersection; it is said to have the strong finite intersection property if that intersection is always infinite.