enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degrees of freedom (statistics) - Wikipedia

    en.wikipedia.org/.../Degrees_of_freedom_(statistics)

    In equations, the typical symbol for degrees of freedom is ν (lowercase Greek letter nu).In text and tables, the abbreviation "d.f." is commonly used. R. A. Fisher used n to symbolize degrees of freedom but modern usage typically reserves n for sample size.

  3. Machine taper - Wikipedia

    en.wikipedia.org/wiki/Machine_taper

    The taper angle of the Morse taper varies somewhat with size but is typically 1.49 degrees (around 3 degrees included). Some modular orthopedic total hip implants use a Morse taper to mate components together. [2] Similarly, some dental implants use a Morse taper to connect components. [3]

  4. Degrees of freedom (physics and chemistry) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom_(physics...

    By the equipartition theorem, internal energy per mole of gas equals c v T, where T is absolute temperature and the specific heat at constant volume is c v = (f)(R/2). R = 8.314 J/(K mol) is the universal gas constant, and "f" is the number of thermodynamic (quadratic) degrees of freedom, counting the number of ways in which energy can occur.

  5. Degrees of freedom (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)

    A mechanism or linkage containing a number of connected rigid bodies may have more than the degrees of freedom for a single rigid body. Here the term degrees of freedom is used to describe the number of parameters needed to specify the spatial pose of a linkage. It is also defined in context of the configuration space, task space and workspace ...

  6. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    The degree of freedom, =, equals the number of observations n minus the number of fitted parameters m. In weighted least squares , the definition is often written in matrix notation as χ ν 2 = r T W r ν , {\displaystyle \chi _{\nu }^{2}={\frac {r^{\mathrm {T} }Wr}{\nu }},} where r is the vector of residuals, and W is the weight matrix, the ...

  7. Degrees of freedom - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom

    In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation : its two coordinates ; a non-infinitesimal object on the plane might have additional degrees of freedoms related to its orientation .

  8. Morse potential - Wikipedia

    en.wikipedia.org/wiki/Morse_potential

    The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule.It is a better approximation for the vibrational structure of the molecule than the quantum harmonic oscillator because it explicitly includes the effects of bond breaking, such as the existence of unbound states.

  9. Gauge fixing - Wikipedia

    en.wikipedia.org/wiki/Gauge_fixing

    In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations.