enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. de Laval nozzle - Wikipedia

    en.wikipedia.org/wiki/De_Laval_nozzle

    A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .

  3. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    The nozzles on a rocket designed to place satellites in orbit are constructed using such converging-diverging geometry. The energy and continuity equations can take on particularly helpful forms for the steady, uniform, isentropic flow through the nozzle.

  4. Rocket engine nozzle - Wikipedia

    en.wikipedia.org/wiki/Rocket_engine_nozzle

    Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.

  5. Choked flow - Wikipedia

    en.wikipedia.org/wiki/Choked_flow

    Figure 1a shows the flow through the nozzle when it is completely subsonic (i.e. the nozzle is not choked). The flow in the chamber accelerates as it converges toward the throat, where it reaches its maximum (subsonic) speed at the throat. The flow then decelerates through the diverging section and exhausts into the ambient as a subsonic jet.

  6. Propelling nozzle - Wikipedia

    en.wikipedia.org/wiki/Propelling_nozzle

    C-D nozzles can accelerate the jet to supersonic velocities within the divergent section, whereas a convergent nozzle cannot accelerate the jet beyond sonic speed. [ 1 ] Propelling nozzles may have a fixed geometry, or they may have variable geometry to give different exit areas to control the operation of the engine when equipped with an ...

  7. Cold gas thruster - Wikipedia

    en.wikipedia.org/wiki/Cold_gas_thruster

    Schematic of a cold gas propulsion system. The nozzle of a cold gas thruster is generally a convergent-divergent nozzle that provides the required thrust in flight. The nozzle is shaped such that the high-pressure, low-velocity gas that enters the nozzle is accelerated as it approaches the throat (the narrowest part of the nozzle), where the gas velocity matches the speed of sound.

  8. Nozzle - Wikipedia

    en.wikipedia.org/wiki/Nozzle

    A de Laval nozzle has a convergent section followed by a divergent section and is often called a convergent-divergent (CD) nozzle ("con-di nozzle"). Convergent nozzles accelerate subsonic fluids. If the nozzle pressure ratio is high enough, then the flow will reach sonic velocity at the narrowest point (i.e. the nozzle throat).

  9. Thrust vectoring - Wikipedia

    en.wikipedia.org/wiki/Thrust_vectoring

    This includes convergent and convergent-divergent nozzles that may be fixed or geometrically variable. It also includes variable mechanisms within a fixed nozzle, such as rotating cascades [22] and rotating exit vanes. [23] Within these aircraft nozzles, the geometry itself may vary from two-dimensional (2-D) to axisymmetric or elliptic.