Search results
Results from the WOW.Com Content Network
Cremona diagram for a plane truss. The Cremona diagram, also known as the Cremona-Maxwell method, is a graphical method used in statics of trusses to determine the forces in members (graphic statics). The method was developed by the Italian mathematician Luigi Cremona.
In structural engineering, the direct stiffness method, also known as the matrix stiffness method, is a structural analysis technique particularly suited for computer-automated analysis of complex structures including the statically indeterminate type.
It is a common practice to eliminate zero force members from a truss to simplify analysis. Although an absolute minimalist design might eliminate all zero force elements from a truss, there are still sound reasons to retain some of these components in actual built systems:
In the context to structural analysis, a structure refers to a body or system of connected parts used to support a load. Important examples related to Civil Engineering include buildings, bridges, and towers; and in other branches of engineering, ship and aircraft frames, tanks, pressure vessels, mechanical systems, and electrical supporting structures are important.
Free body diagrams may not represent an entire physical body. Portions of a body can be selected for analysis. This technique allows calculation of internal forces, making them appear external, allowing analysis. This can be used multiple times to calculate internal forces at different locations within a physical body.
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.
Stress analysis is simplified when the physical dimensions and the distribution of loads allow the structure to be treated as one- or two-dimensional. In the analysis of trusses, for example, the stress field may be assumed to be uniform and uniaxial over each member.
The influence line helps designers find where to place a live load in order to calculate the maximum resulting response for each of the following functions: reaction, shear, or moment. The designer can then scale the influence line by the greatest expected load to calculate the maximum response of each function for which the beam or truss must ...