enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermodynamic system - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_system

    Properties of isolated, closed, and open thermodynamic systems in exchanging energy and matter. A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes.

  3. Isolated system - Wikipedia

    en.wikipedia.org/wiki/Isolated_system

    Properties of Isolated, closed, and open systems in exchanging energy and matter. In physical science, an isolated system is either of the following: a physical system so far removed from other systems that it does not interact with them. a thermodynamic system enclosed by rigid immovable walls through which neither mass nor energy can pass.

  4. Closed system - Wikipedia

    en.wikipedia.org/wiki/Closed_system

    Properties of isolated, closed, and open systems in exchanging energy and matter. In thermodynamics, a closed system can exchange energy (as heat or work) but not matter, with its surroundings. An isolated system cannot exchange any heat, work, or matter with the surroundings, while an open system can exchange energy and matter.

  5. Open system (systems theory) - Wikipedia

    en.wikipedia.org/wiki/Open_system_(systems_theory)

    This concept was expanded upon with the advent of information theory and subsequently systems theory. Today the concept has its applications in the natural and social sciences. Properties of isolated, closed, and open systems in exchanging energy and matter. In the natural sciences an open system is one whose border is permeable to both energy ...

  6. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    For the first law of thermodynamics, there is no trivial passage of physical conception from the closed system view to an open system view. [68] [69] For closed systems, the concepts of an adiabatic enclosure and of an adiabatic wall are fundamental. Matter and internal energy cannot permeate or penetrate such a wall. For an open system, there ...

  7. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    In a closed system (i.e. there is no transfer of matter into or out of the system), the first law states that the change in internal energy of the system (ΔU system) is equal to the difference between the heat supplied to the system (Q) and the work (W) done by the system on its surroundings.

  8. Thermodynamic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equilibrium

    One such potential is the Helmholtz free energy (A), for a closed system at constant volume and temperature (controlled by a heat bath): = Another potential, the Gibbs free energy (G), is minimized at thermodynamic equilibrium in a closed system at constant temperature and pressure, both controlled by the surroundings:

  9. Principle of minimum energy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_minimum_energy

    A closed system, on the other hand, is a system which is connected to another, and cannot exchange matter (i.e. particles), but can transfer other forms of energy (e.g. heat), to or from the other system. If, rather than an isolated system, we have a closed system, in which the entropy rather than the energy remains constant, then it follows ...