enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    Kinetic energy is the movement energy of an object. Kinetic energy can be transferred between objects and transformed into other kinds of energy. [10] Kinetic energy may be best understood by examples that demonstrate how it is transformed to and from other forms of energy.

  3. Mechanical energy - Wikipedia

    en.wikipedia.org/wiki/Mechanical_energy

    In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces , then the mechanical energy is constant.

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Without friction to dissipate a body's energy into heat, the body's energy will trade between potential and (non-thermal) kinetic forms while the total amount remains constant. Any gain of kinetic energy, which occurs when the net force on the body accelerates it to a higher speed, must be accompanied by a loss of potential energy.

  5. Potential energy - Wikipedia

    en.wikipedia.org/wiki/Potential_energy

    There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...

  6. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    The gravitational potential energy is the potential energy an object has because it is within a gravitational field. The magnitude of the force between a point mass, M {\displaystyle M} , and another point mass, m {\displaystyle m} , is given by Newton's law of gravitation : [ 3 ] F = G M m r 2 {\displaystyle F={\frac {GMm}{r^{2}}}}

  7. Hyperbolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_trajectory

    The blue path in this image is an example of a hyperbolic trajectory. A hyperbolic trajectory is depicted in the bottom-right quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the hyperbolic trajectory is shown in red. The height of the kinetic energy decreases ...

  8. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    During the collision of small objects, kinetic energy is first converted to potential energy associated with a repulsive or attractive force between the particles (when the particles move against this force, i.e. the angle between the force and the relative velocity is obtuse), then this potential energy is converted back to kinetic energy ...

  9. Virial theorem - Wikipedia

    en.wikipedia.org/wiki/Virial_theorem

    In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by a conservative force (where the work done is independent of path) with that of the total potential energy of the system.