Search results
Results from the WOW.Com Content Network
The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero. If is a real skew-symmetric matrix and is a real eigenvalue, then =, i.e. the nonzero eigenvalues of a skew-symmetric matrix are non-real. If is a real skew-symmetric matrix, then + is invertible, where is the identity matrix.
Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let Mat n {\displaystyle {\mbox{Mat}}_{n}} denote the space of n × n {\displaystyle n\times n} matrices.
For example, the following 3×3 matrix is symmetric: [] Every square diagonal matrix is symmetric, since all off-diagonal entries are zero. Similarly, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative.
The difference of a square matrix and its conjugate transpose () is skew-Hermitian (also called antihermitian). This implies that the commutator of two Hermitian matrices is skew-Hermitian. An arbitrary square matrix C can be written as the sum of a Hermitian matrix A and a skew-Hermitian matrix B.
Skew-Hermitian matrices can be understood as the complex versions of real skew-symmetric matrices, or as the matrix analogue of the purely imaginary numbers. [2] The set of all skew-Hermitian n × n {\displaystyle n\times n} matrices forms the u ( n ) {\displaystyle u(n)} Lie algebra , which corresponds to the Lie group U( n ) .
If a real square matrix is symmetric, skew-symmetric, or orthogonal, then it is normal. If a complex square matrix is Hermitian, skew-Hermitian, or unitary, then it is normal. Normal matrices are of interest mainly because they include the types of matrices just listed and form the broadest class of matrices for which the spectral theorem holds ...
The matrix [D] is the skew-symmetric matrix that performs the cross product operation, that is [D]y = d × y. The 6×6 matrix obtained from the spatial displacement D = ([A], d) can be assembled into the dual matrix [^] = ([], []), which operates on a screw s = (s.v) to obtain,
If the underlying field has characteristic not 2, alternation is equivalent to skew-symmetry. If the characteristic is 2, the skew-symmetry is implied by, but does not imply alternation. In this case every symplectic form is a symmetric form, but not vice versa. Working in a fixed basis, can be represented by a matrix.