enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    If the characteristic of the field is 2, then a skew-symmetric matrix is the same thing as a symmetric matrix. The sum of two skew-symmetric matrices is skew-symmetric. A scalar multiple of a skew-symmetric matrix is skew-symmetric. The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero.

  3. Tensor product of representations - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_of...

    These are the symmetric square of V, , and the alternating square of V, , respectively. [10] The symmetric and alternating squares are also known as the symmetric part and antisymmetric part of the tensor product. [11]

  4. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let Mat n {\displaystyle {\mbox{Mat}}_{n}} denote the space of n × n {\displaystyle n\times n} matrices.

  5. Antisymmetric tensor - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_tensor

    Totally antisymmetric tensors include: Trivially, all scalars and vectors (tensors of order 0 and 1) are totally antisymmetric (as well as being totally symmetric). The electromagnetic tensor, in electromagnetism. The Riemannian volume form on a pseudo-Riemannian manifold.

  6. Bivector - Wikipedia

    en.wikipedia.org/wiki/Bivector

    The exterior product of two vectors is alternating, so a ∧ a is the zero bivector, and b ∧ a is the negative of the bivector a ∧ b, producing the opposite orientation. Concepts directly related to bivector are rank-2 antisymmetric tensor and skew-symmetric matrix.

  7. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    In two dimensions, the Levi-Civita symbol is defined by: = {+ (,) = (,) (,) = (,) = The values can be arranged into a 2 × 2 antisymmetric matrix: = (). Use of the two-dimensional symbol is common in condensed matter, and in certain specialized high-energy topics like supersymmetry [1] and twistor theory, [2] where it appears in the context of 2-spinors.

  8. Structure constants - Wikipedia

    en.wikipedia.org/wiki/Structure_constants

    Using the cross product as a Lie bracket, the algebra of 3-dimensional real vectors is a Lie algebra isomorphic to the Lie algebras of SU(2) and SO(3). The structure constants are =, where is the antisymmetric Levi-Civita symbol.

  9. Symmetrization - Wikipedia

    en.wikipedia.org/wiki/Symmetrization

    The symmetrization and antisymmetrization of a bilinear map are bilinear; thus away from 2, every bilinear form is a sum of a symmetric form and a skew-symmetric form, and there is no difference between a symmetric form and a quadratic form. At 2, not every form can be decomposed into a symmetric form and a skew-symmetric form.