Search results
Results from the WOW.Com Content Network
For the following proof we apply mathematical induction and only well-known rules of arithmetic. Induction basis: For n = 1 the statement is true with equality. Induction hypothesis: Suppose that the AM–GM statement holds for all choices of n non-negative real numbers. Induction step: Consider n + 1 non-negative real numbers x 1, . . . , x n+1, .
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.
Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.
Bernoulli's inequality can be proved for case 2, in which is a non-negative integer and , using mathematical induction in the following form: we prove the inequality for r ∈ { 0 , 1 } {\displaystyle r\in \{0,1\}} ,
In probability theory, Boole's inequality, also known as the union bound, says that for any finite or countable set of events, the probability that at least one of the events happens is no greater than the sum of the probabilities of the individual events. This inequality provides an upper bound on the probability of occurrence of at least one ...
In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is proved that establishes that any arbitrary case implies the next case. Since in principle the induction rule can be applied repeatedly (starting from the proved base case), it follows that all (usually infinitely many) cases are provable. [ 15 ]
This theorem is usually proved by induction on m, the 'hyper-ness' of the graph. The base case for the proof is m = 2, which is exactly the theorem above. For m = 3 we know the exact value of one non-trivial Ramsey number, namely R(4, 4; 3) = 13. This fact was established by Brendan McKay and Stanisław Radziszowski in 1991. [46]
The core of the proof is based on two proofs by induction. Sketch of the proof of the Gagliardo-Nirenberg inequality [ 6 ] Throughout the proof, given j {\displaystyle j} and m {\displaystyle m} , we shall assume that θ = j m {\textstyle \theta ={\frac {j}{m}}} .