Search results
Results from the WOW.Com Content Network
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .
The inner product of a Euclidean space is often called dot product and denoted x ⋅ y. This is specially the case when a Cartesian coordinate system has been chosen, as, in this case, the inner product of two vectors is the dot product of their coordinate vectors. For this reason, and for historical reasons, the dot notation is more commonly ...
In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the inner product (or rarely the projection product) of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space (see Inner product space for more).
Using the group structure, any inner product on the tangent space at the identity (or any other particular tangent space) can be transported to all other tangent spaces to define a Riemannian metric. Formally, given an inner product g e on the tangent space at the identity, the inner product on the tangent space at an arbitrary point p is ...
where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).
That is, is a Euclidean space, with itself as an associated vector space, and the dot product as an inner product. The Euclidean space R n {\displaystyle \mathbb {R} ^{n}} is often presented as the standard Euclidean space of dimension n .
By technical definition, it is a method of constructing an orthonormal basis from a set of vectors in an inner product space, most commonly the Euclidean space equipped with the standard inner product.
For =, the ‖ ‖-norm is even induced by a canonical inner product , , called the Euclidean inner product, which means that ‖ ‖ = , holds for all vectors . This inner product can expressed in terms of the norm by using the polarization identity .