enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces.

  3. Petersson inner product - Wikipedia

    en.wikipedia.org/wiki/Petersson_inner_product

    The integral is absolutely convergent and the Petersson inner product is a positive definite Hermitian form. For the Hecke operators T n {\displaystyle T_{n}} , and for forms f , g {\displaystyle f,g} of level Γ 0 {\displaystyle \Gamma _{0}} , we have:

  4. Interior product - Wikipedia

    en.wikipedia.org/wiki/Interior_product

    In mathematics, the interior product (also known as interior derivative, interior multiplication, inner multiplication, inner derivative, insertion operator, or inner derivation) is a degree −1 (anti)derivation on the exterior algebra of differential forms on a smooth manifold.

  5. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    The requirement that is a positive-definite inner product then says exactly that this matrix-valued function is a symmetric positive-definite matrix at . In terms of the tensor algebra , the Riemannian metric can be written in terms of the dual basis { d x 1 , … , d x n } {\displaystyle \{dx^{1},\ldots ,dx^{n}\}} of the cotangent bundle as

  6. Outline of algebraic structures - Wikipedia

    en.wikipedia.org/wiki/Outline_of_algebraic...

    The idea is that if the grades of two elements a and b are known, then the grade of ab is known, and so the location of the product ab is determined in the decomposition. Inner product space: an F vector space V with a definite bilinear form V × V → F. Bialgebra: an associative algebra with a compatible coalgebra structure.

  7. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    The inner product of a Euclidean space is often called dot product and denoted x ⋅ y. This is specially the case when a Cartesian coordinate system has been chosen, as, in this case, the inner product of two vectors is the dot product of their coordinate vectors. For this reason, and for historical reasons, the dot notation is more commonly ...

  8. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of R 3. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space.

  9. Frobenius inner product - Wikipedia

    en.wikipedia.org/wiki/Frobenius_inner_product

    In mathematics, the Frobenius inner product is a binary operation that takes two matrices and returns a scalar.It is often denoted , .The operation is a component-wise inner product of two matrices as though they are vectors, and satisfies the axioms for an inner product.