Search results
Results from the WOW.Com Content Network
Cyclic numbers are related to the recurring digital representations of unit fractions. A cyclic number of length L is the digital representation of 1/(L + 1). Conversely, if the digital period of 1/p (where p is prime) is p − 1, then the digits represent a cyclic number. For example: 1/7 = 0.142857 142857...
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:
Cyclic number, a number such that cyclic permutations of the digits are successive multiples of the number; Cyclic order, a ternary relation defining a way to arrange a set of objects in a circle; Cyclic permutation, a permutation with one nontrivial orbit; Cyclic polygon, a polygon which can be given a circumscribed circle; Cyclic shift, also ...
If you square the last three digits and subtract the square of the first three digits, you also get back a cyclic permutation of the number. [citation needed] 857 2 = 734449 142 2 = 20164 734449 − 20164 = 714285. It is the repeating part in the decimal expansion of the rational number 1 / 7 = 0. 142857.
In algebra, a cyclic division algebra is one of the basic examples of a division algebra over a field and plays a key role in the theory of central simple algebras. Definition [ edit ]
The cyclic number corresponding to prime p will possess p − 1 digits if and only if p is a full reptend prime. That is, the multiplicative order ord p b = p − 1, which is equivalent to b being a primitive root modulo p. The term "long prime" was used by John Conway and Richard Guy in their Book of Numbers.
In mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle. [1] [2] In some cases, cyclic permutations are referred to as cycles; [3] if a cyclic permutation has k elements, it may be called a k-cycle. Some authors widen this definition to include permutations with fixed points in ...