enow.com Web Search

  1. Ad

    related to: what is the multiplicative inverse of zero in algebra 2 answers pdf free

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the ...

  3. Unit (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Unit_(ring_theory)

    In algebra, a unit or invertible element [a] of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that = =, where 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u.

  4. Rng (algebra) - Wikipedia

    en.wikipedia.org/wiki/Rng_(algebra)

    A rng of square zero is a rng R such that xy = 0 for all x and y in R. [4] Any abelian group can be made a rng of square zero by defining the multiplication so that xy = 0 for all x and y; [5] thus every abelian group is the additive group of some rng. The only rng of square zero with a multiplicative identity is the zero ring {0}. [5]

  5. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    Let F be a free ring (that is, free algebra over the integers) with the set X of symbols, that is, F consists of polynomials with integral coefficients in noncommuting variables that are elements of X. A free ring satisfies the universal property: any function from the set X to a ring R factors through F so that F → R is the unique ring ...

  6. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    But in the ring Z/6Z, 2 is a zero divisor. This equation has two distinct solutions, x = 1 and x = 4, so the expression is undefined. In field theory, the expression is only shorthand for the formal expression ab −1, where b −1 is the multiplicative inverse of b.

  7. Division algebra - Wikipedia

    en.wikipedia.org/wiki/Division_algebra

    For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element a has a multiplicative inverse (i.e. an element x with ax = xa = 1).

  8. Division ring - Wikipedia

    en.wikipedia.org/wiki/Division_ring

    In algebra, a division ring, also called a skew field (or, occasionally, a sfield [1] [2]), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring [3] in which every nonzero element a has a multiplicative inverse, that is, an element usually denoted a –1, such that a a –1 = a –1 a = 1.

  9. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    Let V and W be vector spaces over a field (or more generally, modules over a ring) and let T be a linear map from V to W.If 0 W is the zero vector of W, then the kernel of T is the preimage of the zero subspace {0 W}; that is, the subset of V consisting of all those elements of V that are mapped by T to the element 0 W.

  1. Ad

    related to: what is the multiplicative inverse of zero in algebra 2 answers pdf free