enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    Another way to analyze hierarchical data would be through a random-coefficients model. This model assumes that each group has a different regression model—with its own intercept and slope. [5] Because groups are sampled, the model assumes that the intercepts and slopes are also randomly sampled from a population of group intercepts and slopes.

  3. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  4. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  5. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle ...

  6. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression , which predicts multiple correlated dependent variables rather than a single dependent variable.

  7. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Simple linear regression and multiple regression using least squares can be done in some spreadsheet applications and on some calculators. While many statistical software packages can perform various types of nonparametric and robust regression, these methods are less standardized.

  8. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    The basic idea of logistic regression is to use the mechanism already developed for linear regression by modeling the probability p i using a linear predictor function, i.e. a linear combination of the explanatory variables and a set of regression coefficients that are specific to the model at hand but the same for all trials.

  9. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    A regression model may be represented via matrix multiplication as y = X β + e , {\displaystyle y=X\beta +e,} where X is the design matrix, β {\displaystyle \beta } is a vector of the model's coefficients (one for each variable), e {\displaystyle e} is a vector of random errors with mean zero, and y is the vector of predicted outputs for each ...