enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. François Chollet - Wikipedia

    en.wikipedia.org/wiki/François_Chollet

    Chollet is the author of Xception: Deep Learning with Depthwise Separable Convolutions, [10] which is among the top ten most cited papers in CVPR proceedings at more than 18,000 citations. [11] Chollet is the author of the book Deep Learning with Python, [12] which sold over 100,000 copies, and the co-author with Joseph J. Allaire of Deep ...

  3. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Designed to enable fast experimentation with deep neural networks, Keras focuses on being user-friendly, modular, and extensible. It was developed as part of the research effort of project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System), [5] and its primary author and maintainer is François Chollet, a Google engineer

  4. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    Python: Python: Only on Linux No Yes No Yes Yes Keras: François Chollet 2015 MIT license: Yes Linux, macOS, Windows: Python: Python, R: Only if using Theano as backend Can use Theano, Tensorflow or PlaidML as backends Yes No Yes Yes [20] Yes Yes No [21] Yes [22] Yes MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks ...

  5. TIME100 AI 2024: Francois Chollet

    www.aol.com/news/time100-ai-2024-francois...

    For premium support please call: 800-290-4726 more ways to reach us

  6. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    JAX is a machine learning framework for transforming numerical functions. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).

  7. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  8. Google Brain - Wikipedia

    en.wikipedia.org/wiki/Google_Brain

    Google Brain was a deep learning artificial intelligence research team that served as the sole AI branch of Google before being incorporated under the newer umbrella of Google AI, a research division at Google dedicated to artificial intelligence.

  9. DeepSpeed - Wikipedia

    en.wikipedia.org/wiki/DeepSpeed

    The library is designed to reduce computing power and memory use and to train large distributed models with better parallelism on existing computer hardware. [2] [3] DeepSpeed is optimized for low latency, high throughput training.