enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chirality (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Chirality_(chemistry)

    For a chiral molecule with one or more stereocenter, the enantiomer corresponds to the stereoisomer in which every stereocenter has the opposite configuration. An organic compound with only one stereogenic carbon is always chiral. On the other hand, an organic compound with multiple stereogenic carbons is typically, but not always, chiral.

  3. Stereoisomerism - Wikipedia

    en.wikipedia.org/wiki/Stereoisomerism

    A configurational stereoisomer is a stereoisomer of a reference molecule that has the opposite configuration at a stereocenter (e.g., R- vs S-or E- vs Z-). This means that configurational isomers can be interconverted only by breaking covalent bonds to the stereocenter, for example, by inverting the configurations of some or all of the ...

  4. Absolute configuration - Wikipedia

    en.wikipedia.org/wiki/Absolute_configuration

    Chiral molecules can differ in their chemical properties, but are identical in their physical properties, which can make distinguishing enantiomers challenging. Absolute configurations for a chiral molecule (in pure form) are most often obtained by X-ray crystallography , although with some important limitations.

  5. Stereocenter - Wikipedia

    en.wikipedia.org/wiki/Stereocenter

    A chirality center (chiral center) is a type of stereocenter. A chirality center is defined as an atom holding a set of four different ligands (atoms or groups of atoms) in a spatial arrangement which is non-superposable on its mirror image. Chirality centers must be sp 3 hybridized, meaning that a chirality center can only have single bonds. [5]

  6. Stereochemistry - Wikipedia

    en.wikipedia.org/wiki/Stereochemistry

    Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. [1] The study of stereochemistry focuses on the relationships between stereoisomers, which are defined as having the same molecular formula and sequence of bonded atoms (constitution) but differing in the geometric positioning of the atoms in space.

  7. Isomer - Wikipedia

    en.wikipedia.org/wiki/Isomer

    In biochemistry and food science, the two enantiomers of a chiral molecule – such as glucose – are usually identified, and treated as very different substances. Each enantiomer of a chiral compound typically rotates the plane of polarized light that passes through it. The rotation has the same magnitude but opposite senses for the two ...

  8. Chiral drugs - Wikipedia

    en.wikipedia.org/wiki/Chiral_drugs

    Chiral purity is a measure of the purity of a chiral drug. Other synonyms employed include enantiomeric excess , enantiomer purity, enantiomeric purity, and optical purity. Optical purity is an obsolete term since today most of the chiral purity measurements are done using chromatographic techniques (not based on optical principles).

  9. Asymmetric carbon - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_carbon

    In stereochemistry, an asymmetric carbon is a carbon atom that is bonded to four different types of atoms or groups of atoms. [1] [2] The four atoms and/or groups attached to the carbon atom can be arranged in space in two different ways that are mirror images of each other, and which lead to so-called left-handed and right-handed versions (stereoisomers) of the same molecule.