Search results
Results from the WOW.Com Content Network
Start with division by 2: the number is even, and n = 2 · 693. Continue with 693, and 2 as a first divisor candidate. 693 is odd (2 is not a divisor), but is a multiple of 3: one has 693 = 3 · 231 and n = 2 · 3 · 231. Continue with 231, and 3 as a first divisor candidate. 231 is also a multiple of 3: one has 231 = 3 · 77, and thus n = 2 ...
3. Chicken Noodle Soup. Perhaps the most classic soup of all, chicken noodle soup is also one of Amidor’s top recommendations. “Made with chicken broth, a touch of noodles and chicken, canned ...
Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3 · 5 , but 7 is a prime number because it cannot be decomposed in this way.
In number theory, an n-smooth (or n-friable) number is an integer whose prime factors are all less than or equal to n. [1] [2] For example, a 7-smooth number is a number in which every prime factor is at most 7. Therefore, 49 = 7 2 and 15750 = 2 × 3 2 × 5 3 × 7 are both 7-smooth, while 11 and 702 = 2 × 3 3 × 13 are not 7-smooth.
2. Hoppin’ John. Southerners are usually eating Hoppin’ John (a simmery mix of black-eyed peas and rice) on New Year's Day. Like most “vegetable” recipes from around this area, it contains ...
Nutrition (per 1 cup): 80 calories, 2 g fat (0 g saturated fat), 130 mg sodium, 13 g carbs (1 g fiber, 1 g sugar), 5 g protein For a classic chicken noodle soup with less sodium, the Organic ...
Suppose N has more than two prime factors. That procedure first finds the factorization with the least values of a and b . That is, a + b {\displaystyle a+b} is the smallest factor ≥ the square-root of N , and so a − b = N / ( a + b ) {\displaystyle a-b=N/(a+b)} is the largest factor ≤ root- N .
Then, by strong induction, assume this is true for all numbers greater than 1 and less than n. If n is prime, there is nothing more to prove. Otherwise, there are integers a and b, where n = a b, and 1 < a ≤ b < n. By the induction hypothesis, a = p 1 p 2 ⋅⋅⋅ p j and b = q 1 q 2 ⋅⋅⋅ q k are products of primes.