Search results
Results from the WOW.Com Content Network
Graphene strongly interacts with photons, with the potential for direct band-gap creation. This is promising for optoelectronic and nanophotonic devices. Light interaction arises due to the Van Hove singularity. Graphene displays different time scales in response to photon interaction, ranging from femtoseconds (ultra-fast) to picoseconds.
Graphene doped with various gaseous species (both acceptors and donors) can be returned to an undoped state by gentle heating in vacuum. [22] [24] Even for dopant concentrations in excess of 10 12 cm −2 carrier mobility exhibits no observable change. [24] Graphene doped with potassium in ultra-high vacuum at low temperature can reduce ...
The Centre for Advanced 2D Materials (CA2DM), at the National University of Singapore (NUS), is the first centre in Asia dedicated to graphene research. [1] The centre was established under the scientific advice of two Nobel Laureates in physics – Prof Andre Geim and Prof Konstantin Novoselov - who won the 2010 Nobel Prize in Physics for their discovery of graphene. [2]
Get breaking news and the latest headlines on business, entertainment, politics, world news, tech, sports, videos and much more from AOL
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
So far, the graphene plasmonic effects have been demonstrated for different applications ranging from light modulation [15] [16] to biological/chemical sensing. [17] [18] [19] High-speed photodetection at 10 Gbit/s based on graphene and 20-fold improvement on the detection efficiency through graphene/gold nanostructure were also reported. [20]
This "epitaxial graphene" consists of a single-atom-thick hexagonal lattice of sp 2-bonded carbon atoms, as in free-standing graphene. However, significant charge transfers from the substrate to the epitaxial graphene, and in some cases, the d-orbitals of the substrate atoms hybridize with the π orbitals of graphene, which significantly alters ...
Levidian's LOOP technology cracks methane into hydrogen and carbon, before locking the carbon into high-quality green graphene. [10] It uses plasma technology to separate methane into its constituent atoms: carbon, locked into high-quality graphene, and hydrogen, which can either be used immediately or stored for future use. [11]