enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/HazenWilliams_equation

    The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.

  3. Hardy Cross method - Wikipedia

    en.wikipedia.org/wiki/Hardy_Cross_method

    4. The total clockwise head loss in loop 1-2-3 is =. The total clockwise head loss in loop 2-3-4 is =. 5. The value of is determined for each loop. It is found to be 60 in both loops (due to symmetry), as shown in the figure. 6.

  4. Hydraulic calculation - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_calculation

    Most design standards require application of the Hazen-Williams method for determining frictional pressure losses through the piping network as water passes through it. Tree and Loop systems are simple enough that the hydraulic calculations could be performed by hand.

  5. Hydraulic head - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_head

    The most common equation used to calculate major head losses is the Darcy–Weisbach equation. Older, more empirical approaches are the Hazen–Williams equation and the Prony equation. For relatively short pipe systems, with a relatively large number of bends and fittings, minor losses can easily exceed major losses.

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach.

  7. Water flow test - Wikipedia

    en.wikipedia.org/wiki/Water_flow_test

    These three pressures, the static pressure, the stagnation pressure, and the residual pressure, along with a specified design pressure of 20psi taken from the American Water Works Association (AWWA) or the NFPA are input into the Hazen-Williams formula to calculate the available flow for fire protection.

  8. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In this form the law approximates the Darcy friction factor, the energy (head) loss factor, friction loss factor or Darcy (friction) factor Λ in the laminar flow at very low velocities in cylindrical tube. The theoretical derivation of a slightly different form of the law was made independently by Wiedman in 1856 and Neumann and E. Hagenbach ...

  9. Allen Hazen - Wikipedia

    en.wikipedia.org/wiki/Allen_Hazen

    Allen Hazen (August 28, 1869 – July 26, 1930) was an American civil engineer and an expert in hydraulics, flood control, water purification and sewage treatment.His career extended from 1888 to 1930, and he is, perhaps, best known for his contributions to hydraulics with the Hazen-Williams equation.