Search results
Results from the WOW.Com Content Network
Procedures for method evaluation and method comparison include ROC curve analysis, [6] Bland–Altman plot, [7] as well as Deming and Passing–Bablok regression. [ 8 ] The software also includes reference interval estimation, [ 9 ] meta-analysis and sample size calculations.
A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist.
Photovoltaic solar cell I-V curves where a line intersects the knee of the curves where the maximum power transfer point is located. In mathematics , a knee of a curve (or elbow of a curve ) is a point where the curve visibly bends, specifically from high slope to low slope (flat or close to flat), or in the other direction.
In the mathematical subfield of numerical analysis, de Boor's algorithm [1] is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by German-American mathematician Carl R. de Boor. Simplified ...
Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach .
Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...
To draw only a certain arc from an angle to an angle , the algorithm needs first to calculate the and coordinates of these end points, where it is necessary to resort to trigonometric or square root computations (see Methods of computing square roots). Then the Bresenham algorithm is run over the complete octant or circle and sets the pixels ...
A parametrically or explicitly given curve can easily be visualized, because to any parameter t or x respectively it is easy to calculate the corresponding point. For implicitly given curves this task is not as easy. In this case one has to determine a curve point with help of starting values and an iteration. See . [2] Examples: