Ad
related to: partial differential equation wikipedia
Search results
Results from the WOW.Com Content Network
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.
The general solution to the first order partial differential equation is a solution which contains an arbitrary function. But, the solution to the first order partial differential equations with as many arbitrary constants as the number of independent variables is called the complete integral. The following n-parameter family of solutions
Name Dim Equation Applications Landau–Lifshitz model: 1+n = + Magnetic field in solids Lin–Tsien equation: 1+2 + = Liouville equation: any + = Liouville–Bratu–Gelfand equation
In mathematics and physics, a nonlinear partial differential equation is a partial differential equation with nonlinear terms. They describe many different physical systems, ranging from gravitation to fluid dynamics, and have been used in mathematics to solve problems such as the Poincaré conjecture and the Calabi conjecture .
F-Yang–Mills equations; Fast sweeping method; Fichera's existence principle; Field equation; Finite element method; Dynamic design analysis method; Finite water-content vadose zone flow method; First-order partial differential equation; KPP–Fisher equation; Fokas method; Föppl–von Kármán equations; Forward problem of electrocardiology ...
A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena in, i.a., engineering science, quantum mechanics and financial mathematics. Examples include the heat equation, time-dependent Schrödinger equation and the Black–Scholes ...
Partial differential equation. Nonlinear partial differential equation. list of nonlinear partial differential equations; Boundary condition; Boundary value problem. Dirichlet problem, Dirichlet boundary condition; Neumann boundary condition; Stefan problem; Wiener–Hopf problem; Separation of variables; Green's function; Elliptic partial ...
Stochastic partial differential equations (SPDEs) generalize partial differential equations via random force terms and coefficients, in the same way ordinary stochastic differential equations generalize ordinary differential equations. They have relevance to quantum field theory, statistical mechanics, and spatial modeling. [1] [2]
Ad
related to: partial differential equation wikipedia