Search results
Results from the WOW.Com Content Network
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.
In a system of differential equations used to describe a time-dependent process, a forcing function is a function that appears in the equations and is only a function of time, and not of any of the other variables. [1] [2] In effect, it is a constant for each value of t.
The mathematical analysis of partial differential equations uses analytical techniques to study partial differential equations. The subject has connections to and motivations from physics and differential geometry, the latter through the branches of global and geometric analysis .
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations.The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric.
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...
In many practical partial differential equations, one has a term that involves derivatives (such as a kinetic energy contribution), and a multiplication with a function (for example, a potential). In the spectral method, the solution is expanded in a suitable set of basis functions, for example plane waves,
Often a partial differential equation can be reduced to a simpler form with a known solution by a suitable change of variables. The article discusses change of variable for PDEs below in two ways: by example; by giving the theory of the method.
The general solution to the first order partial differential equation is a solution which contains an arbitrary function. But, the solution to the first order partial differential equations with as many arbitrary constants as the number of independent variables is called the complete integral. The following n-parameter family of solutions