Search results
Results from the WOW.Com Content Network
As only differences in electronegativity are defined, it is necessary to choose an arbitrary reference point in order to construct a scale. Hydrogen was chosen as the reference, as it forms covalent bonds with a large variety of elements: its electronegativity was fixed first [ 3 ] at 2.1, later revised [ 8 ] to 2.20.
Electronegativity is not a uniquely defined property and may depend on the definition. The suggested values are all taken from WebElements as a consistent set. Many of the highly radioactive elements have values that must be predictions or extrapolations, but are unfortunately not marked as such.
See also: Electronegativities of the elements (data page) There are no reliable sources for Pm, Eu and Yb other than the range of 1.1–1.2; see Pauling, Linus (1960).
According to this scale, fluorine is the most electronegative element, while cesium is the least electronegative element. [18] Trend-wise, as one moves from left to right across a period in the modern periodic table, the electronegativity increases as the nuclear charge increases and the atomic size decreases.
This page was last edited on 14 September 2023, at 10:01 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
This page was last edited on 14 February 2021, at 00:56 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Using the various properties of molecules, such as the energy required to break bonds and the dipole moments of molecules, he established a scale and an associated numerical value for most of the elements — the Pauling Electronegativity Scale — which is useful in predicting the nature of bonds between atoms in molecules. [44]
A list of the electron affinities was used by Robert S. Mulliken to develop an electronegativity scale for atoms, equal to the average of the electrons affinity and ionization potential. [2] [3] Other theoretical concepts that use electron affinity include electronic chemical potential and chemical hardness.