enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    The NavierStokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The cross differentiated NavierStokes equation becomes two 0 = 0 equations and one meaningful equation. The remaining component ψ 3 = ψ is called the stream function. The equation for ψ can simplify since a variety of quantities will now equal zero, for example:

  4. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_existence...

    In mathematics, the NavierStokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...

  5. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    The Stokeslet is the Green's function of the Stokes-Flow-Equations. The conservative term is equal to the dipole gradient field. The formula of vorticity is analogous to the Biot–Savart law in electromagnetism. Alternatively, in a more compact way, one can formulate the velocity field as follows:

  6. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    The equation of motion for Stokes flow can be obtained by linearizing the steady state NavierStokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the NavierStokes equations reduces it to the momentum balance in the Stokes equations: [1]

  7. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    However, theoretical understanding of their solutions is incomplete, despite its importance in science and engineering. For the three-dimensional system of equations, and given some initial conditions, mathematicians have not yet proven that smooth solutions always exist. This is called the NavierStokes existence and smoothness problem.

  8. Astrophysical fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Astrophysical_fluid_dynamics

    Many regular fluid dynamics equations are used in astrophysical fluid dynamics. Some of these equations are: [2] Continuity equations; The NavierStokes equations; Euler's equations; Conservation of mass. The continuity equation is an extension of conservation of mass to fluid flow.

  9. Reynolds-averaged Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Reynolds-averaged_Navier...

    The Reynolds-averaged NavierStokes equations (RANS equations) are time-averaged [a] equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition , whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea first proposed by Osborne Reynolds . [ 1 ]