Search results
Results from the WOW.Com Content Network
Because of their charge and large mass, alpha particles are easily absorbed by materials, and they can travel only a few centimetres in air. They can be absorbed by tissue paper or by the outer layers of human skin. They typically penetrate skin about 40 micrometres, equivalent to a few cells deep.
This means that alpha particles from ordinary alpha decay do not penetrate the outer layers of dead skin cells and cause no damage to the live tissues below. Some very high energy alpha particles compose about 10% of cosmic rays, and these are capable of penetrating the body and even thin metal plates. However, they are of danger only to ...
However, since alpha particles cannot traverse the outermost dead layer of human skin, they can do significant damage only if they come from the decay of atoms inside the body. Since the range of an alpha particle is typically about the diameter of a single eukaryotic cell, the precise location of the emitting atom in the tissue cells becomes ...
Alpha particles are a strongly ionizing form of radiation, but when emitted by radioactive decay they have low penetration power and can be absorbed by a few centimeters of air, or by the top layer of human skin. More powerful alpha particles from ternary fission are three times as energetic, and penetrate proportionately farther in air. The ...
Alpha particles are identical with helium-4 nuclei. Alpha particles travel short distances in air, of only 2–3 cm, and cannot penetrate through a dead layer of skin on the human body. However, some radium alpha particle emitters are "bone seekers" due to radium possessing a high affinity for chloride ions.
"Alpha burns" are caused by alpha particles, which can cause extensive tissue damage if inhaled. [13] Due to the keratin in the epidermal layer of the skin, external alpha burns are limited to only mild reddening of the outermost layer of skin.
Human skin has a low permeability; that is, most foreign substances are unable to penetrate and diffuse through the skin. Skin's outermost layer, the stratum corneum, is an effective barrier to most inorganic nanosized particles.
This increases the chance of double-strand breaks to the DNA in cases of internal contamination, when ingested, inhaled, injected or introduced through the skin. Otherwise, touching an alpha source is typically not harmful, as alpha particles are effectively shielded by a few centimeters of air, a piece of paper, or the thin layer of dead skin ...