Search results
Results from the WOW.Com Content Network
The theorem extends to unbounded intervals by defining the sign at +∞ of a polynomial as the sign of its leading coefficient (that is, the coefficient of the term of highest degree). At –∞ the sign of a polynomial is the sign of its leading coefficient for a polynomial of even degree, and the opposite sign for a polynomial of odd degree.
The discriminant Δ of the cubic is the square of = () (), where a is the leading coefficient of the cubic, and r 1, r 2 and r 3 are the three roots of the cubic. As Δ {\displaystyle {\sqrt {\Delta }}} changes of sign if two roots are exchanged, Δ {\displaystyle {\sqrt {\Delta }}} is fixed by the Galois group only if the Galois group is A 3 .
The leading entry (sometimes leading coefficient [citation needed]) of a row in a matrix is the first nonzero entry in that row. So, for example, in the matrix ( 1 2 0 6 0 2 9 4 0 0 0 4 0 0 0 0 ) , {\displaystyle {\begin{pmatrix}1&2&0&6\\0&2&9&4\\0&0&0&4\\0&0&0&0\end{pmatrix}},} the leading coefficient of the first row is 1; that of the second ...
In mathematics, the sign function or signum function (from signum, Latin for "sign") is a function that has the value −1, +1 or 0 according to whether the sign of a given real number is positive or negative, or the given number is itself zero.
In number theory, the Stark conjectures, introduced by Stark (1971, 1975, 1976, 1980) and later expanded by Tate (), give conjectural information about the coefficient of the leading term in the Taylor expansion of an Artin L-function associated with a Galois extension K/k of algebraic number fields.
Divide the previously dropped/summed number by the leading coefficient of the divisor and place it on the row below (this doesn't need to be done if the leading coefficient is 1). In this case q 3 = a 7 b 4 {\displaystyle q_{3}={\dfrac {a_{7}}{b_{4}}}} , where the index 3 = 7 − 4 {\displaystyle 3=7-4} has been chosen by subtracting the index ...
for the leading coefficient when k is 6, and Keating and Snaith [23] used random matrix theory to suggest some conjectures for the values of the coefficients for higher k. The leading coefficients are conjectured to be the product of an elementary factor, a certain product over primes, and the number of n × n Young tableaux given by the sequence
For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and ...