Search results
Results from the WOW.Com Content Network
In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy (U) of the system. This article uses the physics sign convention for work, where positive work is work done by the system.
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
The process does no pressure-volume work, since such work is defined by =, where P is pressure. The sign convention is such that positive work is performed by the system on the environment. If the process is not quasi-static, the work can perhaps be done in a volume constant thermodynamic process. [1]
In lean thinking, inappropriate processing or excessive processing of goods or work in process, "doing more than is necessary", is seen as one of the seven wastes (Japanese term: muda) which do not add value to a product. [9] [10]
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment.
A process during which the entropy remains constant is called an isentropic process, written = or =. [12] Some examples of theoretically isentropic thermodynamic devices are pumps, gas compressors, turbines, nozzles, and diffusers.
The goal of a process simulation is to find optimal conditions for a process. This is essentially an optimization problem which has to be solved in an iterative process. In the example above the feed stream to the column is defined in terms of its chemical and physical properties.
Thermodynamic cycles may be used to model real devices and systems, typically by making a series of assumptions to reduce the problem to a more manageable form. [2] For example, as shown in the figure, devices such a gas turbine or jet engine can be modeled as a Brayton cycle. The actual device is made up of a series of stages, each of which is ...