Search results
Results from the WOW.Com Content Network
All these extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists. The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X ∈ R k is multivariate-normally distributed if any linear combination of its components Σ k j=1 a j X j has a (univariate) normal ...
Example rotations of Gaussian blobs can be seen in the following examples: ... or an elliptical Gaussian distribution: (,) = ( ... Gaussian is the solution to the ...
The exponentially modified Gaussian distribution, a convolution of a normal distribution with an exponential distribution, and the Gaussian minus exponential distribution, a convolution of a normal distribution with the negative of an exponential distribution. The expectile distribution, which nests the Gaussian distribution in the symmetric case.
The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...
It is possible to have variables X and Y which are individually normally distributed, but have a more complicated joint distribution. In that instance, X + Y may of course have a complicated, non-normal distribution. In some cases, this situation can be treated using copulas.
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product = is a product distribution.
This case arises frequently in statistics; for example, in the distribution of the vector of residuals in the ordinary least squares regression. The X i {\displaystyle X_{i}} are in general not independent; they can be seen as the result of applying the matrix A {\displaystyle {\boldsymbol {A}}} to a collection of independent Gaussian variables ...
The Gaussian integral, also ... continuous probability distributions related to the normal distribution, ... For example, the solution to the integral of the ...