Search results
Results from the WOW.Com Content Network
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
Even higher derivatives are sometimes also used: the third derivative of position with respect to time is known as the jerk. See motion graphs and derivatives. A large number of fundamental equations in physics involve first or second time derivatives of quantities. Many other fundamental quantities in science are time derivatives of one another:
The second time derivative of a vector field in cylindrical coordinates is given by: ¨ = ^ (¨ ¨ ˙ ˙ ˙) + ^ (¨ + ¨ + ˙ ˙ ˙) + ^ ¨ To understand this expression, A is substituted for P , where P is the vector ( ρ , φ , z ).
The term position vector is used mostly in the fields of differential ... For a position vector r that is a function of time t, the time derivatives can be computed ...
Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.)
The time derivative of a position () in a rotating reference frame has two components, one from the explicit time dependence due to motion of the object itself in the rotating reference frame, and another from the frame's own rotation.
In mathematics, a time dependent vector field is a construction in vector calculus which generalizes the concept of vector fields. It can be thought of as a vector field which moves as time passes. For every instant of time, it associates a vector to every point in a Euclidean space or in a manifold.
Absement changes as an object remains displaced and stays constant as the object resides at the initial position. It is the first time-integral of the displacement [3] [4] (i.e. absement is the area under a displacement vs. time graph), so the displacement is the rate of change (first time-derivative) of the absement.