Search results
Results from the WOW.Com Content Network
In computer science, smoothsort is a comparison-based sorting algorithm.A variant of heapsort, it was invented and published by Edsger Dijkstra in 1981. [1] Like heapsort, smoothsort is an in-place algorithm with an upper bound of O(n log n) operations (see big O notation), [2] but it is not a stable sort.
Timsort has been Python's standard sorting algorithm since version 2.3 (since version 3.11 using the Powersort merge policy [5]), and is used to sort arrays of non-primitive type in Java SE 7, [6] on the Android platform, [7] in GNU Octave, [8] on V8, [9] Swift, [10] and inspired the sorting algorithm used in Rust.
The pattern of repeated sorting passes with decreasing gaps is similar to Shellsort, but in Shellsort the array is sorted completely each pass before going on to the next-smallest gap. Comb sort's passes do not completely sort the elements. This is the reason that Shellsort gap sequences have a larger optimal shrink factor of about 2.25.
One implementation can be described as arranging the data sequence in a two-dimensional array and then sorting the columns of the array using insertion sort. The worst-case time complexity of Shellsort is an open problem and depends on the gap sequence used, with known complexities ranging from O ( n 2 ) to O ( n 4/3 ) and Θ( n log 2 n ).
The difference between pigeonhole sort and counting sort is that in counting sort, the auxiliary array does not contain lists of input elements, only counts: 3: 1; 4: 0; 5: 2; 6: 0; 7: 0; 8: 1; For arrays where N is much larger than n, bucket sort is a generalization that is more efficient in space and time.
Such a component or property is called a sort key. For example, the items are books, the sort key is the title, subject or author, and the order is alphabetical. A new sort key can be created from two or more sort keys by lexicographical order. The first is then called the primary sort key, the second the secondary sort key, etc.
Comparison-based sorting algorithms have traditionally dealt with achieving an optimal bound of O(n log n) when dealing with time complexity.Adaptive sort takes advantage of the existing order of the input to try to achieve better times, so that the time taken by the algorithm to sort is a smoothly growing function of the size of the sequence and the disorder in the sequence.
Here input is the input array to be sorted, key returns the numeric key of each item in the input array, count is an auxiliary array used first to store the numbers of items with each key, and then (after the second loop) to store the positions where items with each key should be placed, k is the maximum value of the non-negative key values and ...