Search results
Results from the WOW.Com Content Network
Specific choices of give different types of Riemann sums: . If = for all i, the method is the left rule [2] [3] and gives a left Riemann sum.; If = for all i, the method is the right rule [2] [3] and gives a right Riemann sum.
One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.
The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...
The sum over prime powers then gets extra factors of χ(p m), and the terms Φ(1) and Φ(0) disappear because the L-series has no poles. More generally, the Riemann zeta function and the L-series can be replaced by the Dedekind zeta function of an algebraic number field or a Hecke L-series. The sum over primes then gets replaced by a sum over ...
The Weyl tensor has the same basic symmetries as the Riemann tensor, but its 'analogue' of the Ricci tensor is zero: = = = = The Ricci tensor, the Einstein tensor, and the traceless Ricci tensor are symmetric 2-tensors:
Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...
A Riemann sum of a function f with respect to such a tagged partition is defined as ∑ i = 1 n f ( t i ) Δ i ; {\displaystyle \sum _{i=1}^{n}f(t_{i})\,\Delta _{i};} thus each term of the sum is the area of a rectangle with height equal to the function value at the chosen point of the given sub-interval, and width the same as the width of sub ...
Generally speaking, Riemann solvers are specific methods for computing the numerical flux across a discontinuity in the Riemann problem. [1] They form an important part of high-resolution schemes; typically the right and left states for the Riemann problem are calculated using some form of nonlinear reconstruction, such as a flux limiter or a WENO method, and then used as the input for the ...