Search results
Results from the WOW.Com Content Network
Proline organocatalysis is the use of proline as an organocatalyst in organic chemistry. This theme is often considered the starting point for the area of organocatalysis, even though early discoveries went unappreciated. [1] Modifications, such as MacMillan’s catalyst and Jorgensen's catalysts, proceed with excellent stereocontrol. [2]: 5574 [3]
Proline and its derivatives are often used as asymmetric catalysts in proline organocatalysis reactions. The CBS reduction and proline catalysed aldol condensation are prominent examples. In brewing, proteins rich in proline combine with polyphenols to produce haze (turbidity).
As blood is pumped through the body, the valves within the veins prevent the blood from flowing backwards. After extensive, prolonged standing, these valves can become weak and eventually fail. When this happens, blood is no longer being prevented from flowing backward. Gravity will pull the blood back into an individual's legs, ankles and feet.
In this reaction, naturally occurring chiral proline is the chiral catalyst in an aldol reaction. The starting material is an achiral triketone and it requires just 3% of proline to obtain the reaction product, a ketol in 93% enantiomeric excess. This is the first example of an amino acid-catalyzed asymmetric aldol reaction. [16] [17]
Hyperprolinemia type II results in proline levels in the blood between 10 and 15 times higher than normal, and high levels of a related compound called pyrroline-5-carboxylate. This rare form of the disorder may appear benign at times, [ 2 ] but often involves seizures, convulsions, and intellectual disability.
Proline oxidase, or proline dehydrogenase, functions as the initiator of the proline cycle. Proline metabolism is especially important in nutrient stress because proline is readily available from the breakdown of extracellular matrix (ECM), and the degradation of proline through the proline cycle initiated by proline oxidase (PRODH), a mitochondrial inner membrane enzyme, can generate ATP.
Arginine and proline metabolism is one of the central pathways for the biosynthesis of the amino acids arginine and proline from glutamate. The pathways linking arginine, glutamate, and proline are bidirectional. Thus, the net utilization or production of these amino acids is highly dependent on cell type and developmental stage.
The 3 substrates of this enzyme are L-proline, 2-oxoglutarate, and O 2, whereas its 3 products are cis-3-hydroxy-L-proline, succinate, and CO 2. This enzyme belongs to the family of oxidoreductases , specifically those acting on paired donors, with O2 as oxidant and incorporation or reduction of oxygen.