Search results
Results from the WOW.Com Content Network
It can be shown that the stress tensor is a contravariant second order tensor, which is a statement of how it transforms under a change of the coordinate system. From an x i -system to an x i ' -system, the components σ ij in the initial system are transformed into the components σ ij ' in the new system according to the tensor transformation ...
A second-order fluid is a fluid where the stress tensor is the sum of all tensors that can be formed from the velocity field with up to two derivatives, much as a Newtonian fluid is formed from derivatives up to first order. This model may be obtained from a retarded motion expansion [1] truncated at the second-order. For an isotropic ...
The stress tensor and strain tensor are both second-order tensor fields, and are related in a general linear elastic material by a fourth-order elasticity tensor field. In detail, the tensor quantifying stress in a 3-dimensional solid object has components that can be conveniently represented as a 3 × 3 array.
In continuum mechanics, the most commonly used measure of stress is the Cauchy stress tensor, often called simply the stress tensor or "true stress". However, several alternative measures of stress can be defined: [1] [2] [3]
In tensor calculus, is classified as a second-order tensor of type (0,2) or (1,1) depending on convention. Like any linear map between vectors, the stress tensor can be represented in any chosen Cartesian coordinate system by a 3×3 matrix of real numbers.
According to Cauchy, the stress at any point in an object (Figure 2), assumed as a continuum, is completely defined by the nine stress components of a second order tensor of type (2,0) known as the Cauchy stress tensor, :
which is a tensor field of second order. The divergence of a tensor is: = which is a vector field. This arises in continuum mechanics in Cauchy's laws of motion – the divergence of the Cauchy stress tensor σ is a vector field, related to body forces acting on the fluid.
The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations. [1]