enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  3. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Substituting r(cos θ + i sin θ) for e ix and equating real and imaginary parts in this formula gives ⁠ dr / dx ⁠ = 0 and ⁠ dθ / dx ⁠ = 1. Thus, r is a constant, and θ is x + C for some constant C. The initial values r(0) = 1 and θ(0) = 0 come from e 0i = 1, giving r = 1 and θ = x.

  4. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45°. [ 1 ] In the table below, the label "Undefined" represents a ratio 1 : 0. {\displaystyle 1:0.}

  5. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin θ < θ. So we have ⁡ < <. For negative values of θ we have, by the symmetry of the sine function

  6. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    The fixed point iteration x n+1 = cos(x n) with initial value x 0 = −1 converges to the Dottie number. Zero is the only real fixed point of the sine function; in other words the only intersection of the sine function and the identity function is sin ⁡ ( 0 ) = 0 {\displaystyle \sin(0)=0} .

  7. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    If units of degrees are intended, the degree sign must be explicitly shown (sin x°, cos x°, etc.). Using this standard notation, the argument x for the trigonometric functions satisfies the relationship x = (180 x / π )°, so that, for example, sin π = sin 180° when we take x = π .

  8. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    Some slide rules, such as the K&E Deci-Lon in the photo, calibrate to be accurate for radian conversion, at 5.73 degrees (off by nearly 0.4% for the tangent and 0.2% for the sine for angles around 5 degrees). Others are calibrated to 5.725 degrees, to balance the sine and tangent errors at below 0.3%.

  9. Bhāskara I's sine approximation formula - Wikipedia

    en.wikipedia.org/wiki/Bhāskara_I's_sine...

    Comparison of graphs of the parabolas x(180 − x)/8100 and x(180 − x)/9000 with the graph of sin x (with x in degrees) The part of the graph of sin x in the range from 0° to 180° "looks like" part of a parabola through the points (0, 0) and (180, 0). The general form of such a parabola is