enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The Lorentz force law provides an expression for the force upon a charged body that can be plugged into Newton's second law in order to calculate its acceleration. [ 75 ] : 85 According to the Lorentz force law, a charged body in an electric field experiences a force in the direction of that field, a force proportional to its charge q ...

  4. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    For example, if a person places a force of 10 N at the terminal end of a wrench that is 0.5 m long (or a force of 10 N acting 0.5 m from the twist point of a wrench of any length), the torque will be 5 N⋅m – assuming that the person moves the wrench by applying force in the plane of movement and perpendicular to the wrench.

  5. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    When putting two springs in their equilibrium positions in series attached at the end to a block and then displacing it from that equilibrium, each of the springs will experience corresponding displacements x 1 and x 2 for a total displacement of x 1 + x 2. We will be looking for an equation for the force on the block that looks like:

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  7. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    Both force and displacement are vectors. The work done is given by the dot product of the two vectors, where the result is a scalar. When the force F is constant and the angle θ between the force and the displacement s is also constant, then the work done is given by: = ⁡

  8. Stiffness - Wikipedia

    en.wikipedia.org/wiki/Stiffness

    The ratios between the reaction forces (or moments) and the produced deflection are the coupling stiffnesses. The elasticity tensor is a generalization that describes all possible stretch and shear parameters. A single spring may intentionally be designed to have variable (non-linear) stiffness throughout its displacement.

  9. Motion ratio - Wikipedia

    en.wikipedia.org/wiki/Motion_ratio

    The most common example is in a vehicle's suspension, where it is used to describe the displacement and forces in the springs and shock absorbers. The force in the spring is (roughly) the vertical force at the contact patch divided by the motion ratio, and the spring rate is the wheel rate divided by the motion ratio squared.