Search results
Results from the WOW.Com Content Network
Primary auditory neurons carry action potentials from the cochlea into the transmission pathway shown in the adjacent image. Multiple relay stations act as integration and processing centers. The signals reach the first level of cortical processing at the primary auditory cortex (A1), in the superior temporal gyrus of the temporal lobe. [6]
Both pathways project in humans to the inferior frontal gyrus. The most established role of the auditory dorsal stream in primates is sound localization. In humans, the auditory dorsal stream in the left hemisphere is also responsible for speech repetition and articulation, phonological long-term encoding of word names, and verbal working memory.
The organ of Corti, or spiral organ, is the receptor organ for hearing and is located in the mammalian cochlea.This highly varied strip of epithelial cells allows for transduction of auditory signals into nerve impulses' action potential. [1]
In an ascending pathway, various acoustic reflexes and sound localisation are regulated via relay stations. The impulse reaches the auditory cortical projections on the superior temporal gyrus, which is the auditosensory cortex. This is the first site of unprocessed recognition of sound.
The superior olivary complex (SOC) or superior olive is a collection of brainstem nuclei that is located in pons, functions in multiple aspects of hearing and is an important component of the ascending and descending auditory pathways of the auditory system.
Areas 1 and 2 receive most of their input from area 3. There are also pathways for proprioception (via the cerebellum), and motor control (via Brodmann area 4). See also: S2 Secondary somatosensory cortex. The human eye is the first element of a sensory system: in this case, vision, for the visual system.
The medial geniculate nucleus (MGN) or medial geniculate body (MGB) is part of the auditory thalamus and represents the thalamic relay between the inferior colliculus (IC) and the auditory cortex (AC). [1]
Gap-junction proteins, called connexins, expressed in the cochlea play an important role in auditory functioning. [16] Mutations in gap-junction genes have been found to cause syndromic and nonsyndromic deafness. [17] Certain connexins, including connexin 30 and connexin 26, are prevalent in the two distinct gap-junction systems found in the ...