Search results
Results from the WOW.Com Content Network
In statistics, the conditional probability table (CPT) is defined for a set of discrete and mutually dependent random variables to display conditional probabilities of a single variable with respect to the others (i.e., the probability of each possible value of one variable if we know the values taken on by the other variables).
In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).
Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of ...
where is the instance, [] the expectation value, is a class into which an instance is classified, (|) is the conditional probability of label for instance , and () is the 0–1 loss function: L ( x , y ) = 1 − δ x , y = { 0 if x = y 1 if x ≠ y {\displaystyle L(x,y)=1-\delta _{x,y}={\begin{cases}0&{\text{if }}x=y\\1&{\text{if }}x\neq y\end ...
Given , the Radon-Nikodym theorem implies that there is [3] a -measurable random variable ():, called the conditional probability, such that () = for every , and such a random variable is uniquely defined up to sets of probability zero. A conditional probability is called regular if () is a probability measure on (,) for all a.e.
The conditional probability at any interior node is the average of the conditional probabilities of its children. The latter property is important because it implies that any interior node whose conditional probability is less than 1 has at least one child whose conditional probability is less than 1.
In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.
In probability theory, the zero-truncated Poisson distribution (ZTP distribution) is a certain discrete probability distribution whose support is the set of positive integers. This distribution is also known as the conditional Poisson distribution [ 1 ] or the positive Poisson distribution . [ 2 ]