Search results
Results from the WOW.Com Content Network
The halogens (/ ˈ h æ l ə dʒ ə n, ˈ h eɪ-,-l oʊ-,-ˌ dʒ ɛ n / [1] [2] [3]) are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors [4] would exclude tennessine as its chemistry is unknown and is theoretically expected to ...
The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).
In chemistry, bond energy (BE) is one measure of the strength of a chemical bond. It is sometimes called the mean bond , bond enthalpy , average bond enthalpy , or bond strength . [ 1 ] [ 2 ] [ 3 ] IUPAC defines bond energy as the average value of the gas-phase bond-dissociation energy (usually at a temperature of 298.15 K) for all bonds of the ...
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
These approximations account for the atomic, bond, and group contributions to heat capacity (C p), enthalpy (ΔH°), and entropy (ΔS°). The most important of these approximations to the group-increment theory is the second-order approximation, because this approximation "leads to the direct method of writing the properties of a compound as ...
In chemistry, a halogen bond (XB or HaB [1]) occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. [2]
The Born–Haber cycle is an approach to analyze reaction energies.It was named after two German scientists, Max Born and Fritz Haber, who developed it in 1919. [1] [2] [3] It was also independently formulated by Kasimir Fajans [4] and published concurrently in the same journal. [1]
Bond-dissociation energy, the measure of the strength of a chemical bond calculated through cleaving by homolysis giving two radical fragments A and B and subsequent evaluation of the enthalpy change; Bond energy, the average measure of a chemical bond's strength, calculated through the amount of heat needed to break all of the chemical bonds ...